$\qquad$
$\qquad$

## Circles: Review

1. Though different sizes, all circles have the same shape. This means that all circles are $\qquad$ .
2. A segment with endpoints that lie on the circle is called a
$\qquad$ .
3. A line connecting the center to the circumference of the circle is a $\qquad$
4. An inscribed angle is made up of 2 (a) tangents, (b) vertices, (c) radii, (d) chords.
5. Complete the proof:

Given: $\angle A B C$ is inscribed in circle $Z$
Prove: $m \angle A B C$ is half the measure of $\overparen{A C}$.
Step 1: Draw BZ.
Step 2: Use $\qquad$
Step 3: Since $\overline{Z A}$ and $\overline{Z B}$ are radii, $\overline{Z A} \cong \overline{Z B}$, then $\triangle A Z B$ is isosceles.
Thus, $m \angle A B Z=m \angle B A Z$
Step 4: Substitution $m \overparen{A C}=2 \mathrm{~m} \angle A B Z$ or $2 \mathrm{~m} \angle A B C$.
 Thus, $\frac{1}{2} m \overparen{A C}=m \angle A B C$.
6. Provide a brief description of the Tangent-Radius Theorem.

7-10. Identify the arc length and sector area of the following circles. Then, find the sector measurement in radians.
7. $r=6$
8. $r=15$
$m=60$
$m=12$
9. $r=7$
10. $r=28$
$m=60$
$m=180$
$\qquad$

## Answer Key

## Circles: Review

1. similar
2. chord
3. radius
4. d
5. Exterior angle theorem
6. The radius of a circle is perpendicular to the tangent where the radius intersects the circle.
7. $L=6.28 ; ~ A=18.84 ; ~ \pi / 3$
8. $L=3.14 ; A=23.55 ;{ }^{2 \pi} / 3$
9. $L=7.33 ; A=25.64 ; \pi / 3$
10. $L=87.92 ; A=1230.88 ; \pi$
