\qquad
\qquad

1. Combining chords into a polygon creates a \qquad .
2. A circumscribed \qquad is created by linking tangents.
3. A line connecting an outside point to the edge of a circle is a \qquad .
4. A central angle is made up of 2 (a) tangents, (b) vertices, (c) radii, (d) chords.
5. Complete the proof:

Given: Segment $A B$ intersects circle X at point C.
Prove: $m \angle X C A=m \angle X C B$

1. Segment $A B$ intersects circle X 1. Given at point C
2. $X C$ is the radius of circle X
3. Def of a radius
4. $\angle X C A$ is a right angle
5. \qquad
6. $m \angle X C A=90^{\circ}$
7. Def of right angle
8. $m \angle X C A=180^{\circ}$
9. Def of Supp $\angle s$
10. $m \angle A B-m \angle X C A=90^{\circ}$
11. Angle Subtraction
12. $m \angle X C B=90^{\circ}$
13. Simplify
14. $m \angle X C B=m \angle X C B$
15. Substitution
16. Provide a brief description of the Inscribed Quadrilateral Theorem.

7-10. Identify the arc length and sector area of the following circles. Then, find the area in radians.
7. $r=10$
8. $r=3$
$m=30$
$m=90$
9. $r=29$
10. $r=19$
$m=18$
$m=120$

Name: \qquad
\qquad Answer Key

Circles: Review

1., circumscribed circle
2. polygon
3. tangent
4. c
5. Tangent-Radius theorem
6. If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary
7. $L=5.23 ; A=26.17 ; \pi / 6$
8. $L=4.71 ; A=7.07 ; \pi$
9. $L=9.11 ; A=132.04 ; \pi / 10$
10. $L=39.77 ; A=377.85 ;{ }^{2 \pi} / 3$

