Name:	

Date:

В

Congruence: Geometrical Theorems

The **Corresponding Angles postulate** states that any corresponding angles created by parallel lines being intersected by a transversal are congruent.

From this, we can deduce other congruent relationships:

Alternate Interior Angles

Alternate Exterior Angles

Same-Side Interior Angles

Example: Determine the congruent relationships in the figure above.

Step 1: Start with what we know:AB and CD are parallel lines.XY is a transversal that cuts through AB and CD.

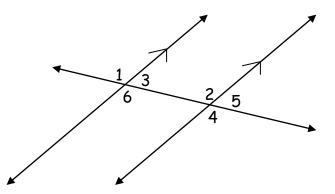
Step 2: Identify Linear Pairs

The linear pair theorem tells us that if two angles form a linear pair (combine to form a line), then they are supplementary (add up to 180°). The linear pairs are listed to the right.

The Same-Side Interior \angle Theorem states that two pairs of same-side interior angles are also supplementary.

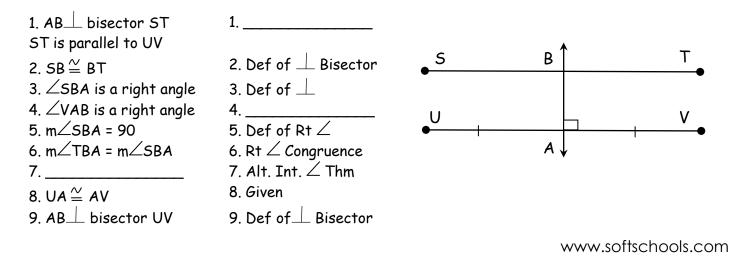
Linear Pairs: \angle ATX and \angle BTX \angle BTX and \angle BTS \angle DST and \angle DSY \angle DSY and \angle VSC \angle VSC and \angle CST \angle CST and \angle TSD \angle ATS and \angle ATX Same-Side Interior Angles \angle ATS and \angle TSC \angle BTS and \angle DST

Step 3: Find Alternate Angles


The Alternate Angles theorem states that, when parallel lines are cut by a transversal, the pair of alternate interior angles are congruent (Alternate Interior \angle Theorem). Also, the pair of alternate exterior angles are congruent (Alternate Exterior \angle Theorem).

If m∠ATX $\stackrel{\sim}{=}$ m∠BTS	Corresponding Angles Postulate
and AB and CD are parallel	Given
then $\angle ATX \stackrel{\sim}{=} \angle BSY$	Alternate Angles Theorem

Name:_____ Date:_____ Practice. 1-4. Give the angle of each measure. Justify your answers. 1. m∠BTS if m∠TSC = 75° 2. m∠BTS if m∠ATX = 36° 3. m∠BTS if m∠TSD = 139°


4. m \angle YSC if m \angle BTX = 100°

5-8. State the theorem/postulate(s) related to the measures of the angles in each pair. Then, find the angle measures.

5. $m \angle 1 = (25x + 3)^{\circ}; m \angle 6 = (30x-17)^{\circ}$ 6. $m \angle 3 = (7x + 15)^{\circ}; m \angle 5 = (10x-9)^{\circ}$ 7. $m \angle 2 = (2x+1)^{\circ}; m \angle 3 = (\frac{1}{2}x - 6)^{\circ}$ 8. $m \angle 4 = (37x - 15)^{\circ}; m \angle 1 = (44x-29)^{\circ}$

9-11. Extend. Line AB is a perpendicular bisector of segment ST. $UA \stackrel{\sim}{=} AV$. If ST and UV are parallel, prove that AB is a perpendicular bisector of UV.

Name:____

Answer Key

Date:____

Congruence: Geometric Theorems

1. Alternate Exterior Angle; $m\angle BTS = 75^{\circ}$ 2. Corresponding Angle; $m\angle BTS = 36^{\circ}$ 3. Same Side Interior Angle; $m\angle BTS = 41^{\circ}$ 4. Alternate Exterior Angle; x = 2; $m\angle 100^{\circ}$ 5. x = 4; $m\angle 1 = m\angle 6 = 103^{\circ}$ 6. x = 2; $m\angle 3 = m\angle 5 = 36^{\circ}$ 7. x = 2; $m\angle 2 = 31$; $m\angle 3 = 149^{\circ}$ 8. x = 2; $m\angle 4 = m\angle 1 = 74^{\circ}$ 9. Given 10. Alt Int. Angle 11. $m\angle TBA = m\angle UAB$

www.softschools.com