\qquad
\qquad

Congruence: Geometrical Theorems

The Corresponding Angles postulate states that any corresponding angles created by parallel lines being intersected by a transversal are congruent.

From this, we can deduce other congruent relationships:
Alternate Interior Angles
Alternate Exterior Angles
Same-Side Interior Angles

Example: Determine the congruent relationships in the figure above.
Step 1: Start with what we know:
$A B$ and $C D$ are parallel lines.
$X Y$ is a transversal that cuts through $A B$ and $C D$.

Step 2: Identify Linear Pairs
The linear pair theorem tells us that if two angles form a linear pair (combine to form a line), then they are supplementary (add up to 180').
The linear pairs are listed to the right.
The Same-Side Interior \angle Theorem states that two pairs of same-side interior angles are also supplementary.

Linear Pairs:
$\angle A T X$ and $\angle B T X$
$\angle B T X$ and $\angle B T S$
$\angle D S T$ and $\angle D S Y$
$\angle D S Y$ and $\angle \mathrm{YSC}$
$\angle \mathrm{YSC}$ and $\angle C S T$
$\angle C S T$ and $\angle T S D$
$\angle A T S$ and $\angle A T X$
Same-Side Interior Angles
$\angle A T S$ and $\angle T S C$
$\angle B T S$ and $\angle D S T$

Step 3: Find Alternate Angles
The Alternate Angles theorem states that, when parallel lines are cut by a transversal, the pair of alternate interior angles are congruent (Alternate Interior \angle Theorem). Also, the pair of alternate exterior angles are congruent (Alternate Exterior \angle Theorem).
$\begin{array}{ll}\text { If } m \angle A T X \cong m \angle B T S & \text { Corresponding Angles Postulate } \\ \text { and } A B \text { and } C D \text { are parallel } & \text { Given } \\ \text { then } \angle A T X \cong \angle B S Y & \text { Alternate Angles Theorem }\end{array}$

Name: \qquad
\qquad Practice.

1-4. Give the angle of each measure. Justify your answers.

1. $m \angle B T S$ if $m \angle T S C=88^{\circ}$
2. $m \angle B T S$ if $m \angle A T X=64^{\circ}$
3. $m \angle B T S$ if $m \angle T S D=120^{\circ}$

4. $m \angle Y S D$ if $m \angle A T X=88^{\circ}$

5-8. State the theorem/postulate(s) related to the measures of the angles in each pair. Then, find the angle measures.

9-10. Extend. Line S is parallel to line U. Prove that $\angle 1 \cong \angle 2$.

1. ST is parallel to UV
2. \qquad
3. $\angle 3 \cong \angle 2$
4. $\angle 1 \cong \angle 2$
5. Given
6. Vertical \angle Theorem
7. \qquad
8. \qquad

\qquad
9. Alternate Interior Angles; $m \angle B T S=88^{\circ}$
10. Vertical Angles; $m \angle B T S=64^{\circ}$
11. Same Side Interior Angles; $m \angle B T S=60^{\circ}$
12. Alternate Exterior Angles; $m \angle Y S D=88^{\circ}$
13. Alternate Exterior Angle: $x=2 ; m \angle 0=m \angle 3=47^{\circ}$
14. Same Side Interior; $x=12 ; m \angle 4=113 ; m \angle 3=67^{\circ}$
15. Supplementary Angle; $x=24 ; m \angle 2=144 ; m \angle 3=36^{\circ}$
16. Alternate Interior Angle; $x=2 ; m \angle 3=m \angle 7=40^{\circ}$
17. $\angle 1 \cong \angle 3$
18. Corresponding \angle Theorem
19. Trans Prop of \cong
