\qquad
\qquad

Expressing Properties: Coordinate Proofs

We can use coordinates to prove simple geometric theorems algebraically by using simple coordinate algebra. The formulas we will use are:

$$
\begin{aligned}
& \text { Distance formula: } d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \text { Slope formula: } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Example: Without graphing, determine whether points $A(1,4), B(3,8), C(3,2)$, and $D(1,-2)$ form rectangle ABCD.

Step 1: Find the slope of two sides of the figure. A slope is a measure of the rise/fall of a line on a coordinate plane. As a result, parallel lines have the same slope.

$$
\begin{aligned}
& m_{A B}=\frac{8-4}{3-1}=2 \\
& m_{C D}=\frac{-2-2}{1-3}=2 \\
& m_{A B}=m_{C D} \\
& A B \| C D
\end{aligned}
$$

Step 2: Identify whether the sides of $A B C D$ intersect at 90° angles.
In order for an object to be a square, it must contain two sets of parallel lines that intersect at 90 degree angles. Coordinates that intersect at 90 degrees are considered perpendicular.

$$
\begin{aligned}
& m_{A B}=\frac{8-4}{3-1}=2 \\
& m_{B C}=\frac{2-8}{3-3}=\text { undefined } \\
& \text { (vertical line) }
\end{aligned}
$$

Perpendicular lines have slopes that are complete reciprocals both in sign (+/-) and placement. In order to be completely reciprocal to $m A B, m B C$ would have to be $-\frac{1}{2}$. $m B C \neq-$ $\frac{1}{2}$; therefore $A B C D$ is not a rectangle.

Example: Use the given coordinates to find the midpoint of segment $A B$. Then, determine the perimeter and area of $\triangle A C D$.

Step 1: Determine the length of $A B / 2$. Midpt $=2$
Step 2: Calculate the length of $A C, C D$, and $D A$

$$
\begin{array}{ll}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
d_{A C}=\sqrt{(4-1)^{2}+(6-2)^{2}} \\
d_{C D}=\sqrt{(1-7)^{2}+(2-2)^{2}} \\
d_{A D}=\sqrt{(4-7)^{2}+(6-2)^{2}} &
\end{array}
$$

Step 3: Calculate the Perimeter and Area of $\triangle A C D$.
$P=s 1+s 2+s 3=A C+C D+A D=5+6+5=16$
$A=\frac{1}{2} B h=\left(\frac{1}{2}\right)(6)(4)=12$
\qquad
Practice. Identify whether the following segments are parallel, perpendicular, or neither. Graph.
A $(1,4)$
B $(2,6)$
$C(3,3)$
$D(2,2)$
$E(3,0)$
F $(3,4)$

1. $A B$ and $D F$

2. AF and BD

3. BD and $A E$

4. BD and CF

5. CD and $A E$

6. DF and $A C$

Use the distance formula to determine the perimeter and area of each of the following objects.
7. $A(-2,1) ; B(2,4) ; C(6,1) \quad$ 8. $P(1,3) ; Q(2,5) ; R(4,4) ; S(3,2)$ 9.T(1,2); U(2,2); V(4,6); W(3,6)

P $\triangle A B C=$ $P \square P Q R S=$ $P=$ \qquad
A $\triangle A B C=$ \qquad $A \square P Q R S=$
\qquad
$A=$ \qquad

10. A man is building a frame for the roof of his doghouse. He needs to add supports that will connect at the midpoints of $X Y, Y Z$ and $Z X$. Calculate the coordinates for each connection.

Name: \qquad
\qquad Answer Key

Expressing Properties: Coordinate Proofs

4. Perpendicular

7. $A(-2,1) ; B(2,4) ; C(6,1)$

P $\triangle A B C=18$
A $\triangle A B C=16$
2. Neither

5. Parallel

6. Perpendicular

8. $P(1,3) ; Q(2,5) ; R(4,4) ; S(3,2)$ 9.T(1,2); $U(2,2) ; V(4,6) ; W(3,6)$ $P \square P Q R S=4 \sqrt{8} \quad P=10$
$A \square P Q R S=128 \quad A=4$
10. (1, 2.5); (3.5, 1); and (3.5, 2.5)

