\qquad
\qquad

Similarity: Problems Involving Right Angles

Special Right Triangles

A right triangle is any triangle composed of a 90 degree angle and two complimentary angles. As you have most likely learned, the sides of a triangle can be compared using trigonometric ratios (sine, cosine, tangent). For special right triangles, we can predict these constant ratios based on the following data:

Special Triangle	$\sin A$	$\cos A$
$45-45-90$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$30-60-90$	$\sin 30=\frac{1}{2}$	$\cos 30=\sqrt{3} / 2$
	$\sin 60=\sqrt{3} / 2$	$\cos 60=\frac{1}{2}$

If the angle is unknown, use the inverse trigonometric function, listed here:
Inverse Trigonometric Functions
If $\sin A=x$, then $\sin ^{-1} x=m \angle A$
If $\cos A=x$, then $\cos ^{-1} x=m \angle A$
If $\tan A=x$, then $\tan ^{-1} x=m \angle A$

Example: Find the unknown measures. Round to the nearest tenth degree or angle.

Step 1: Use the Pythagorean Theorem.

$$
\begin{aligned}
& X Y^{2}=X Z^{2}+Y Z^{2} \\
& X Y^{2}=7^{2}+9^{2} \\
& X Y^{2}=130 \\
& X Y \approx 11.4
\end{aligned}
$$

Step2: Use trigonometric ratios to find $m \angle X$ and $m \angle Y$

$$
\begin{aligned}
& \mathrm{m} \angle X=\tan ^{-1}(7 / 9) \approx 37.9 \\
& \mathrm{~m} \angle X=90-37.9=52.1
\end{aligned}
$$

\qquad
\qquad
1-4. Given the trigonometric ratios, identify which is $\angle A$.

1. $\sin A={ }^{12} / 13$
2. $\cos A=5 / 13$
3. $\tan A=5 / 12$
4. $\operatorname{Cos} A=12 / 13$

5-8. Identify the missing measurements.
5.

6.

7.

8.

9-11. Complete each statement.
9. $\cos ^{-1}($) $\approx 12^{\circ}$
10. \sin \qquad $\approx 2 / 3$
11. _ $60=\frac{1}{2}$
12. A kite maker is assembling kite X so that the height of triangle $A B C$ is half the length of $X D$. Determine whether $\triangle A B C \sim \triangle B C D$. Defend your answer.

\qquad

Similarity: Problems Involving Right Triangles

1. $\angle 1$
2. $\angle 2$
3. $\angle 2$
4. $\angle 2$
5. 5J3; $\angle A=30 ; \angle B=60$
6. $5 \sqrt{ } 61 ; \angle A=39.8 ; \angle B=50.2$
7. 57: $\angle A=32.3 ; \angle B=57.7$
8. $\sqrt{85.48 ; ~} \angle A=38.9 ; \angle B=51.9$
9. 0.98
10. 42°
11. cos
12. No. Because no information is given that indicates they have similar side or angle measures.
