Name:_____

Date:_____

Similarity: Problems Involving Right Angles

Special Right Triangles

A right triangle is any triangle composed of a 90 degree angle and two complimentary angles. As you have most likely learned, the sides of a triangle can be compared using trigonometric ratios (sine, cosine, tangent). For special right triangles, we can predict these constant ratios based on the following data:

Special Triangle	sin A	cos A
45-45-90	<u>√2</u>	<u>√2</u>
	2	2
30-60-90	$\sin 30 = \frac{1}{2}$	$\cos 30 = \sqrt{3}/2$
	$\sin 60 = \frac{\sqrt{3}}{2}$	$\cos 60 = \frac{1}{2}$

If the angle is unknown, use the inverse trigonometric function, listed here:

Inverse Trigonometric Functions

If $\sin A = x$, then $\sin^{-1}x = m\angle A$

If $\cos A = x$, then $\cos^{-1}x = m\angle A$

If tanA = x, then $tan^{-1}x = m\angle A$

Example: Find the unknown measures. Round to the nearest tenth degree or angle.

$$XY^2 = XZ^2 + YZ^2$$

$$XY^2 = 7^2 + 9^2$$

$$XY^2 = 130$$

$$m\angle X = tan^{-1}(^{7}/_{9}) \approx 37.9$$

$$m\angle X = 90 - 37.9 = 52.1$$

7

1-4. Given the trigonometric ratios, identify which is $\angle A$.

1.
$$\sin A = {}^{12}/_{13}$$

3. $tan A = \frac{5}{12}$

2.
$$\cos A = \frac{5}{13}$$

1.
$$\sin A = {}^{12}/_1$$

4.
$$\cos A = {}^{12}/_{13}$$

5-8. Identify the missing measurements.

5.

6.

7.

8.

9-11. Complete each statement.

10.
$$\sin 2 \approx 2/3$$

11. ____ 60 =
$$\frac{1}{2}$$

12. A kite maker is assembling kite X so that the height of triangle ABC is half the length of XD. Determine whether $\triangle ABC \sim \triangle BCD$.

Defend your answer.

Name:	
Name.	

Date:_____

Answer Key

Similarity: Problems Involving Right Triangles

1. ∠1

2. ∠2

3. ∠2

4. ∠2

5. 5√3; ∠A =30; ∠B =60

6. $5\sqrt{61}$; $\angle A = 39.8$; $\angle B = 50.2$

7. $\sqrt{7}$; $\angle A = 32.3$; $\angle B = 57.7$

8. $\sqrt{85.48}$; $\angle A = 38.9$; $\angle B = 51.9$

9.0.98

10. 42°

11. cos

12. No. Because no information is given that indicates they have similar side or angle measures.