Name:_

Date:

Similarity: Problems Involving Right Angles

Special Right Triangles

A right triangle is any triangle composed of a 90 degree angle and two complimentary angles. As you have most likely learned, the sides of a triangle can be compared using trigonometric ratios (sine, cosine, tangent). For special right triangles, we can predict these constant ratios based on the following data:

Special Triangle	sin A	cos A
45-45-90	<u>J2</u>	<u>J2</u>
	2	2
30-60-90	sin 30 = 1	cos 30 = ^{√3} / ₂
	sin 60 = ^{√3} /₂	cos 60 = ¹ / ₂

If the angle is unknown, use the inverse trigonometric function, listed here:

Inverse Trigonometric Functions

If sinA = x, then sin⁻¹x = m $\angle A$ If cosA = x, then cos⁻¹x = m $\angle A$ If tanA = x, then tan⁻¹x = m $\angle A$

Example: Find the unknown measures. Round to the nearest tenth degree or angle.

Step 1: Use the Pythagorean Theorem. $XY^2 = XZ^2 + YZ^2$ $XY^2 = 7^2 + 9^2$ XY = 130 $XY \approx 11.4$

Step2: Use trigonometric ratios to find m $\angle X$ and m $\angle Y$

m∠X = tan⁻¹(⁷/₉) ≈ 37.9 m∠X = 90 - 37.9 = 52.1

9

У

7

Ζ

5-8. Identify the missing measurements.

Date:_____

_

Name:_____ Answer Key

Similarity: Problems Involving Right Triangles
1. ∠2
2. ∠1
3. ∠1
4. ∠2
5. 8; ∠A ≈36.9; ∠B ≈53.1
6. 6√5; ∠A ≈26.6; ∠B ≈ 63.4
7. 6; ∠A = 30; ∠B = 60
8. 12√2; ∠A = 45; ∠B = 45
9. 0.31
10. 74°
11. cos
12. Yes. SAS Similarity Theorem

www.softschools.com