\qquad

Similarity: Problems Involving Right Angles

Special Right Triangles

A right triangle is any triangle composed of a 90 degree angle and two complimentary angles. As you have most likely learned, the sides of a triangle can be compared using trigonometric ratios (sine, cosine, tangent). For special right triangles, we can predict these constant ratios based on the following data:

Special Triangle	$\sin \boldsymbol{A}$	$\cos \boldsymbol{A}$
$45-45-90$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$30-60-90$	$\sin 30=\frac{1}{2}$	$\cos 30=\sqrt{3} / 2$
	$\sin 60=\sqrt{3} / 2$	$\cos 60=\frac{1}{2}$

If the angle is unknown, use the inverse trigonometric function, listed here:

> Inverse Trigonometric Functions
> If $\sin A=x$, then $\sin ^{-1} x=m \angle A$
> If $\cos A=x$, then $\cos ^{-1} x=m \angle A$
> If $\tan A=x$, then $\tan ^{-1} x=m \angle A$

Example: Find the unknown measures. Round to the nearest tenth degree or angle.

Step 1: Use the Pythagorean Theorem.

$$
\begin{aligned}
& X Y^{2}=X Z^{2}+Y Z^{2} \\
& X Y^{2}=7^{2}+9^{2} \\
& X Y^{2}=130 \\
& X Y \approx 11.4
\end{aligned}
$$

Step2: Use trigonometric ratios to find $m \angle X$ and $m \angle Y$

$$
\begin{aligned}
& m \angle X=\tan ^{-1}(7 / 9) \approx 37.9 \\
& m \angle X=90-37.9=52.1
\end{aligned}
$$

\qquad
\qquad
1-4. Given the trigonometric ratios, identify which is $\angle A$.

1. $\tan A=5 / 12$
2. $\tan A=2.4$
3. $\cos A=5 / 13$
4. $\sin A=5 / 13$

5-8. Identify the missing measurements.
5.

7.

6.

8.

9-11. Complete each statement.
9. $\sin ^{-1}\left(_^{\square}\right) \approx 18^{\circ}$
10. tan \qquad $\approx 3.5^{\circ}$
11. $\int^{-1} 0.8=37^{\circ}$
12. A kite maker is assembling kite X so that $B D$ bisects $C A$. $B X$ is half the length of XD. Determine whether $\triangle A X B \sim \triangle C X B$. Defend your answer.

Name: \qquad Date: \qquad Answer Key

Similarity: Problems Involving Right Triangles

1. $\angle 2$
2. $\angle 1$
3. $\angle 1$
4. $\angle 2$
5. 8: $\angle A \approx 36.9 ; \angle B \approx 53.1$
6. $6 \sqrt{5} ; \angle A \approx 26.6 ; \angle B \approx 63.4$
7. 6: $\angle A=30 ; \angle B=60$
8. $12 \sqrt{2} ; \angle A=45 ; \angle B=45$
9. 0.31
10.74°
10. cos
11. Yes. SAS Similarity Theorem
