\qquad
\qquad

Similarity: Triangle Theorems

Similarity is when two objects are the same shape, but not necessarily the same size. We can use similarity to solve for right triangles. It has three properties that we will deal with.

Reflexive Property of Similarity: $\triangle X Y Z \sim \triangle X Y Z$
Symmetric Property of Similarity: If $\triangle X Y Z \sim \triangle T U V$, then $\triangle T U V \sim \Delta X Y Z$
Transitive Property of Similarity: If $\triangle X Y Z \sim \triangle T U V$ and $\triangle T U V \sim \Delta L M N$, then $\triangle X Y Z \sim \triangle L M N$
Example 1: Two similar right triangles are given. Apply a scale factor of 2 to determine the side lengths of the second triangle. Check your answer using the Pythagorean Theorem.

Step 1: Multiply the known values by the SF.

$$
\begin{aligned}
& X=3 \cdot 2=6 \\
& y=4 \cdot 2=8 \\
& Z=5 \cdot 2=10
\end{aligned}
$$

Step 2: Check your answer using Pythagorean Theorem
 $a^{2}+b^{2}=c^{2}$
$(6)^{2}+(8)^{2}=(10)^{2}$
$36+64=100$
The Side-Side-Side (SSS) Similarity Theorem states that if the three sides of one triangle are proportional to the three corresponding sides of another triangle, then the triangles are similar.

Example 2: Line segment $A B$ is drawn parallel to one side of $\triangle Y X Z$, bisecting $X Z$. Determine the measurements of $\triangle A B Z$ using the SSS similarity theorem.

Step 1: Use Pythagorean Theorem to determine the length of $X Z$.

$$
\begin{aligned}
& (26)^{2}=(24)^{2}+(X Z)^{2} \\
& (26)^{2}-(24)^{2}=(X Z)^{2} \\
& 676-576=(X Z)^{2} \\
& (X Z)^{2}=100 \\
& X Z=10
\end{aligned}
$$

Step 2: Determine the length of $B Z$
Bisect means to cut in half.
$B Z=\frac{1}{2} X Z=\frac{1}{2}(10)=5$
$B Z=5$
Step 3: Determine the scale factor of $\triangle Y X Z: ~ \triangle A B Z$
 If $B Z$ is $\frac{1}{2} X Z$, then our scale factor is $\frac{1}{2}$.
Step 4: Use SSS similarity theorem to apply scale factor and find the unknown measures: $A B=12 ; A Z=13 ; B Z=5$

Name: \qquad Date: \qquad
The Angle-Angle Similarity Postulate states that if two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.

1. Explain why $\triangle A B Z$ and $\triangle X Y Z$ are similar and write a similarity statement.

2. Use the SSS Similarity theorem to choose the correct statement if $\triangle A B C \sim \triangle X Y Z$
A. $\angle X Z Y \sim \angle C A B$
B. $B C \sim Z X$
C. $A C \sim X Z$
D. $B C \sim Z Y$

3-10. Complete the proof using similar triangles.
Given: A is the midpoint of $X Y$.
B is the midpoint of $Y Z$.
Prove: $\triangle A Y B \sim \triangle X Y Z$

1. A is the midpoint of $X Y$
2. Given
B is the midpoint of $Y Z$
3. $X A \cong A Y, Y B \cong B Z$
4. \qquad
5. \qquad 3. Def of \cong segments
6. \qquad
7. $X Y=X A+X A, Y Z=Y B+Y B$
8. \qquad
9. ${ }^{x y} / x_{A}=2,{ }^{y Z} / y_{B}=2$
10.
11. Segment Addition postulate
12. ${ }^{X Y} / X_{A A}={ }^{y Z} /{ }_{Y B}$
13. Transitive Property of Equality
14. \qquad
15. $\triangle A Y B \sim \triangle X Y Z$
16. \qquad
\qquad
17. Since $A B$ and $Y Z$ are parallel, $\angle B \cong \angle Y$ and $\angle A \cong \angle X$ (alternate interior angles theorem). Therefore, $\triangle A B Z \sim \triangle X Y Z$.
18. C
19. Def of midpoint
20. $X A=A Y ; Y B=B Z$
21. $X Y=X A+A Y ; Y Z=Y B+B Z$
22. Substitution Property
23. $X Y=2 A Y ; Y Z=2 Y B$
24. Division Property of Equality
25. $\angle Y \cong \angle Y$
26. SAS ~
