\qquad
\qquad

Trigonometry: Right and Non-Right Triangles

Area of a Triangle Using Sine

We can use sine to determine the area of non-right triangles. This formula is derived from the area of a triangle formula, $A=1 / 2 B h$

For any triangle $A B C$ with side a opposite $\angle A$, side b opposite $\angle B$ and side c opposite $\angle C$, height h is represented by a line perpendicular to the base of the triangle. If SAS is given and h is unknown,

$m \angle A$ can be written
Multiplying produces
$\sin A=h / b$
$b \sin A=h$
Substitute into the formula:
$A=\frac{1}{2} c(b \sin A)$
$A=\frac{1}{2} b c \sin A$

Therefore,
$A=\frac{1}{2} a b \sin (c)$
$A=\frac{1}{2} b c \sin (a)$
$A=\frac{1}{2} a c \sin (b)$

Note: You must know the included angle (the angle between the two known sides) in order to determine the area using this formula.

Example. Calculate the area of $\triangle A B C$

$$
\begin{aligned}
& A=\frac{1}{2} b c \sin A \\
& A=\frac{1}{2}(8)(12) \sin 54 \\
& A \approx 38.8
\end{aligned}
$$

Law of Sines and Law of Cosines
When working with non-right triangles, we can use the Law of Sines and the Law of Cosines to determine unknown measurements:

Law of Sines

For any $\triangle A B C$ with side lengths a, b, and c,

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Name:
Step 1: Determine $m \angle C$:

Find the inverse of $\sin C$:

Step 2: Determine $m \angle A$

Step 3: Find the area of $\triangle A B C$

Date: \qquad
$\underline{\sin 48}=\underline{\sin C}$
1826
$26(\sin 45)=\sin C$
18
$\sin C=0.5144$
$\sin ^{-1} C=30.96$
$180-(48+30.96)=m \angle A$
$m \angle B \approx 101$
$A=\frac{1}{2} b c \sin A$
$A=\frac{1}{2}(18)(26)(\sin 101)$

$$
A \approx 229.7
$$

Practice. Use the Law of Sines and the Law of Cosines to determine the missing measurements for $\triangle A B C$.

1. $A B=$ \qquad
2. $m \angle A=$ \qquad
3. $B A=$ \qquad

4. $B C=$ \qquad 5. $m \angle A=$ \qquad 6. $m \angle A=$ \qquad

7-9. Identify the area of the following triangles.
7.

8.

9.

10. Using the same reasoning given above, derive the formula for the area of triangle $A B C$ given measurements $c, m \angle B$, and a.

Name: \qquad Date: \qquad Answer Key

Trigonometry: Right and Non-Right Triangles

1. 17.7
2. 29°
3. 34.9
4. 6.5
5. 26°
6. 65°
7. 493.3
8. 148
9. 96.7
10. a. $A=\frac{1}{2} B h ; B=a ; h=$?
b. $\sin B=h / c$
c. $c(\sin B)=c\left({ }^{h} / c\right)$
d. $h=c(\sin B)$
e. $A=\frac{1}{2}(a)(c)(\sin B)$
