Name:_

Date:

Trigonometry: Right and Non-Right Triangles

Area of a Triangle Using Sine

 $m\angle A$ can be written

Multiplying produces

Rewritten:

Substitute into the formula:

We can use sine to determine the area of non-right triangles. This formula is derived from the area of a triangle formula, A=1/2Bh

sin A = h/b

b sin A = h

For any triangle ABC with side a opposite $\angle A$, side b opposite $\angle B$ and side c opposite $\angle C$, height h is represented by a line perpendicular to the base of the triangle. If SAS is given and h is unknown,

Note: You must know the included angle (the angle between the two known sides) in order to determine the area using this formula.

 $A = \frac{1}{2} c (b sinA)$

 $A = \frac{1}{2}$ bc sinA

Example. Calculate the area of $\triangle ABC$ $A = \frac{1}{2}$ bc sin A $A = \frac{1}{2}$ (8)(12) sin 54 $A \approx 38.8$

Law of Sines and Law of Cosines

When working with non-right triangles, we can use the Law of Sines and the Law of Cosines to determine unknown measurements:

Law of Sines

For any $\triangle ABC$ with side lengths a, b, and c, $\frac{\sin A}{a} = \frac{\sin B}{\sin c} = \frac{\sin C}{c}$

Example: Determine the area of $\triangle ABC$.

For any $\triangle ABC$ with side lengths a, b, and c, For any $\triangle ABC$ with side lengths a, b, and c:

 $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$

www.softschools.com

Name: Date: **Step 1**: Determine $m\angle C$: $\sin 48 = \sin C$ 18 26 $26 (\sin 45) = \sin C$ 18 sin C = 0.5144Find the inverse of sin C: $\sin^{-1}C = 30.96$ **Step 2:** Determine m∠A 180 - (48 + 30.96) = m∠A m∠B ≈ 101 $A = \frac{1}{2}$ bc sinA **Step 3:** Find the area of $\triangle ABC$ $A = \frac{1}{2} (18)(26)(\sin 101)$

Practice. Use the Law of Sines and the Law of Cosines to determine the missing measurements for $\triangle ABC$.

A ≈ 229.7

10. Using the same reasoning given above, derive the formula for the area of triangle ABC given measurements c, m \angle B, and a.

www.softschools.com

Name:	
-------	--

Date:_____

Answer Key

Trigonometry: Right and Non-Right Triangles
1. 17.7
2. 29°
3. 34.9
4. 6.5
5. 26°
6. 65°
7. 493.3
8. 148
9. 96.7
10. a. A = ½ Bh; B = a; h = ?
b. sin B = h/c
c. c(sin B) = $c(h/c)$
d. h = c (sin B)
e. A = $\frac{1}{2}$ (a)(c)(sin B)