Name: \_

### Date:\_\_

## Geometric Measurement: Volume Formulas

Volume refers to the amount of space taken up by a three-dimensional object.

It helps to first be familiar with how to find the **total surface area** of a solid. We find this by looking at the shapes that the solid contains and adding the various areas together.

| Item            | Area Formula                                                                           |                 | Picture |
|-----------------|----------------------------------------------------------------------------------------|-----------------|---------|
| Circle          | $A = \pi r^2$                                                                          |                 | • r     |
| Cylinder        | B = πr <sup>2</sup><br>L = 2πrh<br>S = L + 2B                                          |                 | h       |
| Regular Pyramid | $B = \ell \cdot w$<br>$L = \frac{1}{2}P\ell$<br>$S = \frac{1}{2}P\ell+B$               | <b>e</b><br>4 4 |         |
| Cone            | $\ell$ = slant height<br>L = $\pi r \ell$<br>S = L + B, or<br>$\pi r \ell$ + $\pi r^2$ | e               | r       |
| Prism           | V = lwh                                                                                |                 |         |

A famous mathematician, Cavalieri, argued that if the cross-section of two three-dimensional objects consistently had the same area, then those objects have the same volume.

**Example:** Two cylinders are laid out side-by-side but look different. Explain how we can use Cavalieri's principle to show they have the same volume.



**Answer:** A cross-section of both objects determines that they have the same area:  $16\pi$ . Cavalieri proposed that if two objects

Name: \_

Date:\_\_\_\_

consistently had the same aurface area, then the two objects would be the same volume.

## Practice.

**1-4 Origami**. The following pieces of cut paper are folded into three-dimensional geometric shapes. Identify the solid.



**5-8**. Identify the shape created by taking a cross-section of the following objects. Assume that the cross-section is parallel to the base of the object (if applicable).

- 5. A cone 6. A sphere
- 7. A regular pyramid

8. A cylinder

9. Rotations. What shape is created by rotating an equilateral triangle about a single vertex?

10. What solid is created by rotating and then folding together four isosceles triangles?

| Name: |  |
|-------|--|
|-------|--|

#### Date:\_\_\_\_\_

# Answer Key

## Geometric Measurement: Volume Formulas

- 1. Pentagonal prism
- 2. Hexagonal pyramid
- 3. Cylinder
- 4. Cone
- 5. Circle
- 6. Circle
- 7. Square
- 8. Circle
- 9. Prism
- 10. Pyramid