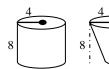
Name:

Date:

Geometric Measurement: Volume Formulas


Volume refers to the amount of space taken up by a three-dimensional object.

It helps to first be familiar with how to find the **total surface area** of a solid. We find this by looking at the shapes that the solid contains and adding the various areas together.

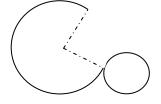
Item	Area Formula	Picture		
Circle	$A = \pi r^2$		r	
Cylinder	B = πr ² L = 2πrh S = L + 2B		h	
Regular Pyramid	$B = \ell \cdot w$ $L = \frac{1}{2}P\ell$ $S = \frac{1}{2}P\ell + B$	4 4	4 4 4 4	
Cone	<pre>l = slant height L = πrl S = L + B, or πrl + πr²</pre>	e e	r	
Prism	V = lwh			

A famous mathematician, Cavalieri, argued that if the cross-section of two three-dimensional objects consistently had the same area, then those objects have the same volume.

Example: Two cylinders are laid out side-by-side but look different. Explain how we can use Cavalieri's principle to show they have the same volume.

Answer: A cross-section of both objects determines that they have the same area: 16π . Cavalieri proposed that if two objects

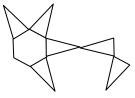
Name:

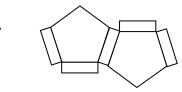

Date:____

consistently had the same aurface area, then the two objects would be the same volume.

Practice.

1-4 Origami. The following pieces of cut paper are folded into three-dimensional geometric shapes. Identify the solid.


1.


2.

3.

4.

5-8. Identify the object created by taking a cross-section of the following objects. Assume that the cross-section is parallel to the base of the object (if applicable).

5. A cylinder

6. A cone

7. A sphere

8. A pyramid

9. Rotations. What solid is created by rotating a square?

10. What solid is created by a circle repeated infinitely about a single diameter?

Name:			Date:				
Answer Key							
C	AA	V. I					
Geometric	: Measurement:	Volume Fo	ormulas	_			
1. Cone							
2. Cylinder							
3. Hexagonal pyramid							
4. Pentagonal prism							
5. Circle							
6. Circle							
7. Circle							
8. Square							
9. Cube							
10. Sphere							

www.softschools.com