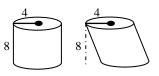
Name: __

Date:


Geometric Measurement: Using Volume Formulas

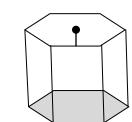
Volume refers to the amount of space taken up by a three-dimensional object. Here is a brief listing of volume formulas.

Item	Surface Area	Volume Formula
Cylinder	B = πr ² L = 2πrh S = L + 2B	$V = \pi r^2 h$
		Sphere: πr ³
Regular Pyramid	$B = \ell \cdot w$ $L = \frac{1}{2}P\ell$ $S = \frac{1}{2}P\ell+B$	V = Bh
Cone	l = slant height L = πrl S = L + B, or πrl + πr ²	V = πrh
Prism	$S = 2(\ell_1 \cdot w_1) + 2(\ell_2 \cdot w_2) + 2(\ell_3 \cdot w_3)$	V = l · w · h

A famous mathematician, Cavalieri, argued that if the cross-section of two three-dimensional objects consistently had the same area, then those objects have the same volume.

Example: Two cylinders are laid out side-by-side but look different. Explain how we can use Cavalieri's principle to show they have the same volume.

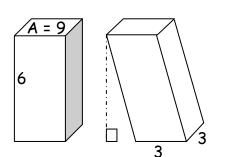
Answer: A cross-section of both objects determines that they have the same area: 16π . Cavalieri proposed that if a cross-section of two objects consistently had the same surface area, then the two objects would be the same volume. Name: _____


Date:

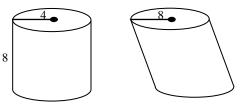
Practice. Determine what information you will need in order to find the volume for each object.

2.

1.



Solve. Find the volume of each figure.


3. Pyramid	4. Cone	5. Cylinder
h = 6	h = 5	h = 10
B = 9	r = 2	d = 4
6. Sphere	7. Prism	8. Cube
d = 6	h = 3	h = 4
	l = 5	
	w = 6	

Use Cavalieri's principle to determine whether the objects pictured have the same volume. Explain your answer.

9.

10.

Name:

Answer Key

Geometric Measurement: Using Volume Formulas

1. Radius

2. Area of base and the height

3.54

4. 31.4

5. 125.6

6.84.78

7.90

8.64

9. Yes. A cross-section of the two objects would render the same area measurements throughout.

10. No. A cross-section of the two objects would render different area measurements.

www.softschools.com