Name: ___

Date:

Geometric Measurement: Using Volume Formulas

Volume refers to the amount of space taken up by a three-dimensional object. Here is a brief listing of volume formulas.

Item	Surface Area	Volume Formula	
Cylinder	$B = \pi r^2$		
	L = 2πrh	$V = \pi r^2 h$	
	S = L + 2B		
		Sphere: πr^3	
Regular Pyramid	B = { • w	V = Bh	
	$L = \frac{1}{2} P \ell$		
e	S = ½ Pℓ+B		
Cone	l = slant height		
	$L = \pi r \ell$	$V = \pi rh$	
	S = L + B, or		
e T	πrt + πr ⁻		
Prism	$S = 2(\ell_1 \cdot w_1) + 2(\ell_2 \cdot w_2)$		
	+ 2(ℓ ₃ • w ₃)	$V = \ell \cdot w \cdot h$	

A famous mathematician, Cavalieri, argued that if the cross-section of two three-dimensional objects consistently had the same area, then those objects have the same volume.

Example: Two cylinders are laid out side-by-side but look different. Explain how we can use Cavalieri's principle to show they have the same volume.

Answer: A cross-section of both objects determines that they have the same area: 16π . Cavalieri proposed that if a cross-section of two objects consistently had the same surface area, then the two objects would be the same volume. Name: _____

1.

Date:

Practice. Determine what information you will need in order to find the volume for each object.

2.

Solve. Find the volume of each figure.

3. Pyramid	4. Cone	5. Cylinder
h = 10	h = 8	h = 8
B = 16	r = 3.5	<i>C</i> = 4π
6. Sphere	7. Rectangular Prism	8. Cube
$C = 8\pi$	h = 4	w = 15
	l = 8	
	w = 2	

Use Cavalieri's principle to determine whether the objects pictured have the same volume. Explain your answer.

9.

10.

Name: _____

Answer Key

Date:

Geometric Measurement: Using Volume Formulas

- 1. Area of the base and height of the object
- 2. Height of the object and radius (or the area of the base)

3.160

4. 87.92

5. 100.48

6.200.96

7.64

8.3375

9. No. A cross-section of the objects would not consistently render a similar area throughout.

10. Yes. A cross-section of the objects would consistently render a similar area throughout.

www.softschools.com