\qquad
\qquad

Expressing Properties: Conic Section

Conic Sections: The Circle

A conic section is a way of expressing the intersection of a plane with a cone. When a cone is intersected by a plane that is parallel to the base of the cone, the result is a circle.

Equations of circles

All points on a circle are equidistant from the center. We can use this information to write an equation with center (h, k) and radius r : Equation of a circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$

We can use Pythagorean Theorem to find states the radius of a circle. Using the theorem $c^{2}=a^{2}+b^{2}$, the radius can be represented by c. Sides a and b are represented by $(x-h)$ and ($y-k$), respectively.

Example: The center of a circle is $(-1,3)$ and passes through $(-2,6)$. Find the radius using the Pythagorean Theorem.

Step 1: Let (h,k) represent the center of the circle. $a^{2}+b^{2}$ can be represented $(x+1)^{2}+(y-3)^{2}=r^{2}$.

Step 2: Substitute for values x and y

$$
\begin{aligned}
& r^{2}=(-2+1)^{2}+(6-3)^{2} \\
& r^{2}=(-1)^{2}+(3)^{2} \\
& r^{2}=1+9=10 \\
& r=\sqrt{10}
\end{aligned}
$$

Completing the square

When the center of a circle is unknown, we can complete the square to find its location.
Example: Find the center point of circle with equation $4 x^{2}-8 x+16 y+4 y^{2}-12=0$ Step 1: Verify that the squared terms have matching coefficients, $4 x^{2}$ and $4 y^{2}$ Step 2: Divide your coefficient from both sides of equal sign:
$\frac{4 x^{2}-8 x+16 y+4 y^{2}-12}{4}=\frac{0}{4}=\frac{4 x^{2}}{4}-\frac{8 x}{4}+\frac{16 y}{4}+\frac{4 y^{2}}{4}-\frac{12}{4}=\frac{0}{4}=x^{2}-2 x+4 y+y^{2}-3=0$
Step 3: Subtract any remaining integers from both sides: $x^{2}-2 x+4 y+y^{2}-3=0$
$x^{2}-2 x+4 y+y^{2}=3$
Step 4: Divide each non-squared integer by 2 and square: $(-2 / 2)^{2}=1 ;(4 / 2)^{2}=4$ Step 5: Add your solutions to both sides of the equation: $x^{2}-2 x+1+y^{2}+4 y+4=3$ Step 6: Factor:
$(x-1)^{2}+(y+2)^{2}=3$
From here, we can determine that the center of the circle is $(1,-2)$ and it has a radius of $\sqrt{3}$
\qquad
Practice. Use the information provided to determine the equation of each circle.

1. Center $A(4,2)$ and radius 2
2. Center $B(0,-4)$ and radius 6
3. Center $B(0,0)$ and radius 5

Practice. Use Pythagorean Theorem to determine the radius of each circle.
4. Center $A(-5,-3)$ and point $(1,-1)$ 5. Center $B(-2,-8)$ and point $(4,2)$
6. Center $A(0,0)$ and point $(3,6)$

Practice. Complete the square to determine the equation of each circle.
7. $2 y+y^{2}-6 x+x^{2}-1=0$
8. $x^{2}-4 x+16 y+2 y^{2}-2=0$
9. $2 x^{2}-8 y+6 x+2 y^{2}-2=0$
10. $y^{2}+4-16 x+x^{2}-12 y=0$

Name: \qquad
\qquad

Expressing Properties: Conic Section

1. $(x-4)^{2}+(y-2)^{2}=4$
2. $x^{2}+(y+4)^{2}=36$
3. $x^{2}+y^{2}=25$
4. $r=2$
5. $r=4$
6. $r=3$
7. $(x-3)^{2}+(y+1)^{2}=11$
8. Not a Circle
9. $(x+3)^{2}+(y-2)^{2}=13$
10. $(x-8)^{2}+(y-6)^{2}=104$
