Name: _

Date:

×

Expressing Properties: Conic Section

Conic Sections: The Circle

A conic section is a way of expressing the intersection of a plane with a cone. When a cone is intersected by a plane that is parallel to the base of the cone, the result is a circle.

Equations of circles

All points on a circle are equidistant from the center. We can use this information to write an equation with center (h, k) and radius r: $Equation of a circle: (x-h)^2 + (y-k)^2 = r^2$

We can use Pythagorean Theorem to find states the radius of a circle. Using the theorem $c^2 = a^2 + b^2$, the radius can be represented by c. Sides a and b are represented by (x-h) and (y-k), respectively.

Example: The center of a circle is (-1,3) and passes through (-2, 6). Find the radius using the Pythagorean Theorem.

Step 1: Let (h, k) represent the center of the circle. $a^2 + b^2$ can be represented $(x+1)^2 + (y-3)^2 = r^2$.

 Step 2: Substitute for values x and y
 $r^2 = (-2+1)^2 + (6-3)^2$

 Step 3: Simplify and solve for r.
 $r^2 = (-1)^2 + (3)^2$
 $r^2 = 1 + 9 = 10$ $r = \sqrt{10}$

Completing the square

When the center of a circle is unknown, we can complete the square to find its location.

Example: Find the center point of circle with equation $4x^2 - 8x + 16y + 4y^2 - 12 = 0$ **Step 1:** Verify that the squared terms have matching coefficients, $4x^2$ and $4y^2$ **Step 2:** Divide your coefficient from both sides of equal sign:

 $\frac{4x^{2}-8x+16y+4y^{2}-12}{4} = \frac{0}{4} = \frac{4x^{2}}{4} - \frac{8x}{4} + \frac{16y}{4} + \frac{4y^{2}}{4} - \frac{12}{4} = \frac{0}{4} = x^{2} - 2x + 4y + y^{2} - 3 = 0$ Step 3: Subtract any remaining integers from both sides: $x^{2} - 2x + 4y + y^{2} - 3 = 0$ $x^{2} - 2x + 4y + y^{2} - 3 = 0$ $x^{2} - 2x + 4y + y^{2} - 3 = 0$ Step 4: Divide each non-squared integer by 2 and square: $(-2/2)^{2} = 1; (4/2)^{2} = 4$ Step 5: Add your solutions to both sides of the equation: $x^{2} - 2x + 1 + y^{2} + 4y + 4 = 3$ Step 6: Factor: $(x - 1)^{2} + (y + 2)^{2} = 3$

From here, we can determine that the center of the circle is (1, -2) and it has a radius of $\sqrt{3}$

www.softschools.com

Name: _____

Date:____

Answer Key

Expressing Properties: Conic Section

1. $(x-4)^{2} + (y-2)^{2} = 4$ 2. $x^{2} + (y+4)^{2} = 36$ 3. $x^{2} + y^{2} = 25$ 4. r=25. r=46. r=37. $(x-3)^{2} + (y+1)^{2} = 11$ 8. Not a Circle 9. $(x+3)^{2} + (y-2)^{2} = 13$ 10. $(x-8)^{2} + (y-6)^{2} = 104$