Name: _

Radius

Chord

Circles: Theorems about Circles

To be **similar**, two objects do not need to have the same size, but must have the same shape. In order for something to be a **circle**, it must have a center that is equidistant to any point on its circumference. Therefore, all circles are similar.

> The line connecting the center to the circumference of the circle is the **radius**. A **chord** is a segment with endpoints that lie on the circle. Combining two chords within a circle creates an **inscribed angle**. The vertex of an inscribed angle rests on the circle. An inscribed angle that rests on the diameter is a right angle.

Date:

Similar

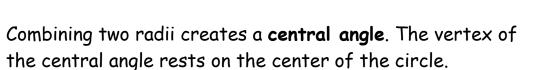
Central Angle

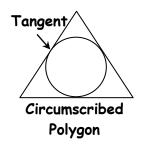
Circumscribed

Circle

Inscribed angle

Combining chords into a polygon creates a **circumscribed circle**.





A tangent is a line that is in the same plane as a circle and intersects the circle at exactly one point. The tangent of a circle is always perpendicular to the radius. In a **circumscribed polygon**, the sides of the polygon are made up of the tangents of a circle.

Challenge: Given that $\angle ABC$ is inscribed in circle Z, prove that m $\angle ABC$ is half the measure of \widehat{AC} .

Step 1: Draw BZ. $\widehat{MAC} = \underline{m}\angle AZC;$ BStep 2: Use Exterior Angle Theorem $\underline{m}\angle AXC = \underline{m}\angle ABZ + \underline{m}\angle BAZ.$ Step 3: Since \overline{ZA} and \overline{ZB} are radii, $\overline{ZA} \cong \overline{ZB}$, then $\triangle AZB$ is isosceles.AStep 4: Substitution $\overline{ZA} \cong \overline{ZB}$, then $\triangle AZB$ is isosceles.AThus, $\underline{m}\angle ABZ = \underline{m}\angle ABZ$ or $2\underline{m}\angle ABC$. \overline{Z} Thus, $\frac{1}{2}$ $\overline{ABC} = \underline{m}\angle ABC$.

www.softschools.com

Date:_____

Name: ______ **Practice**. Complete the proof.

Tangent-Radius Theorem: The radius of a circle is perpendicular to the tangent where the radius intersects the circle.

Given: Segment AB intersects circle X at point C. Prove: $m\angle XCA = m\angle XCB$

1. Segment AB intersects circle X at point C	1
2 is the radius of circle X	2. Def of a radius
3. ∠XCA is a right angle	3
4. m∠XCA = 90°	4
5	5. Def of Supp $\angle s$
6. m∠AB - m∠XCA = 90°	6
7	7. Simplify
8. m∠XCB = m∠XCB	8

A circle that contains all the vertices of a polygon is circumscribed about the polygon. The circumcenter of XYZ is the center of the circumscribed circle.

9-10. Complete the proof using the figure below: Given: $\forall T \text{ bisects } \angle X \forall Z;$ $X \forall \stackrel{\sim}{=} \forall Z$ **Prove:** Line $\forall T \text{ is the}$ bisector of segment XZ

YT bisects $\angle XYZ$; $XY \stackrel{\sim}{=} YZ$	Given
∠xyt [~] ∠zyt	9
XY [∼] ZY	Reflexive POC
$\Delta XYT \stackrel{\sim}{=} \Delta ZYT$	SAS
$\angle xTy \cong \angle ZTy$	CPCTC
\angle XTY and \angle ZTY are supp.	Lin. Pair Thm.
\angle XTY and \angle ZTY are rt. \angle s	$\stackrel{\sim}{=} \angle s$ supp \rightarrow rt $\angle s$
m∠XTY = 90; m∠ZTY = 90	Def of rt.∠s
YT_XZ	Definition of
XT≌ TZ	CPCTC
T is the midpoint of XZ	Def of midpoint
10	Def of \perp bisector

www.softschools.com

Date:_____

Answer Key

Circles: Theorems about Circles

- 1. Given
- 2. XC
- 3. Tangent-radius Thm
- 4. Def of Rt \angle
- 5. m∠AB = 180°
- 6. Angle Subtraction
- 7. m∠XCB = 90°
- 8. Substitution
- 9. Def of angle bisector
- 10. Line YT is the bisector of segment XZ