Name: _

Radius

Chord

Circles: Theorems about Circles

To be **similar**, two objects do not need to have the same size, but must have the same shape. In order for something to be a **circle**, it must have a center that is equidistant to any point on its circumference. Therefore, all circles are similar.

> The line connecting the center to the circumference of the circle is the **radius**. A **chord** is a segment with endpoints that lie on the circle. Combining two chords within a circle creates an **inscribed angle**. The vertex of an inscribed angle rests on the circle. An inscribed angle that rests on the diameter is a right angle.

Date:

Similar

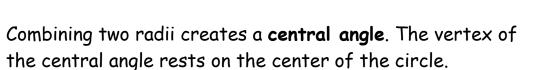
Central Angle

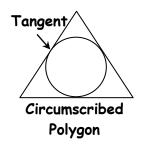
Circumscribed

Circle

Inscribed angle

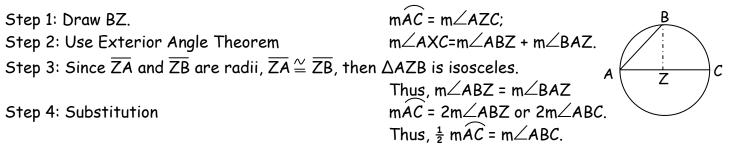
Combining chords into a polygon creates a **circumscribed circle**.





A tangent is a line that is in the same plane as a circle and intersects the circle at exactly one point. The tangent of a circle is always perpendicular to the radius. In a **circumscribed polygon**, the sides of the polygon are made up of the tangents of a circle.

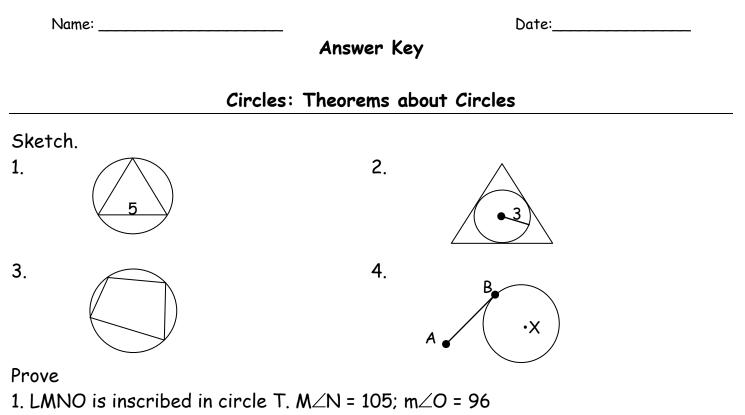
Challenge: Given that $\angle ABC$ is inscribed in circle Z, prove that m $\angle ABC$ is half the measure of \widehat{AC} .



www.softschools.com

Name: Sketch.	Date:
1. Inscribed equil. Δ , b=5	2. Circumscribed Δ , r=3
3. Inscribed quadrilateral	4. Tangent AB; Intersects cir. X at point B.
Inscribed Quadrilateral Theorem: If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary	
Given: LMNO is inscribed in circle T; m∠N = 105; m∠O =96 Prove: m∠L = 75 and m∠M = 84	
1	1. Given
2. m∠L + m∠N = 180 and m∠M + m∠O = 180	2
3	3. Substitution
4	4. Addition property of equality
5. m∠L = 75 and m∠M = 84	5

Bonus: Explain in your own words why the opposite angles of an inscribed quadrilateral are supplementary.



- 2. Inscribed Quadrilateral Theorem
- 3. m∠L + 105 = 180; m∠M + 96 = 180
- 4. 180-105 = m∠L; 180-96 = m∠M
- 5. Simplify

Bonus:

The sum of all angles of a quadrilateral is equal to 360 degrees. The sum of any two opposing angles would therefore be supplementary.