Surface Area of a Cylinder

\qquad
\qquad

Solve the problems.

1) The height and radius of a cylindrical-shaped storage tank are 12.5 feet and 3.7 feet respectively. Find the surface area of the tank?
2) Alexa buys a juice can on a hot day. The cylindrical has surface area of $350.09 \mathrm{~cm}^{2}$ of juice. The diameter of a can is 8.2 cm . What is the height of the can?
3) The surface area of a cylindrical vessel is $2201 \mathrm{~cm}^{2}$ and its height is 19.7 cm . What is the radius of the cylindrical vessel?
4) Sam brought the lollipops jar near the science museum, the jar look like the cylindrical shape and has a radius of 6.5 mm and height 17.2 mm . What is the surface area of a jar?
5) Sarah loves roses. She has a cylindrical-shaped container with height 13.7 cm and diameter 18.4 cm , she plans to fill the container with soil to grow her won rose plants. Find the surface area of the cylinder?
\qquad
\qquad

Solve the problems.

1) The height and radius of a cylindrical-shaped storage tank are 12.5 feet and 3.7 feet respectively. Find the surface area of the tank?
$376.61 \approx 377$ square feet
2) Alexa buys a juice can on a hot day. The cylindrical has surface area of $350.09 \mathrm{~cm}^{2}$ of juice. The diameter of a can is 8.2 cm . What is the height of the can?
$9.49 \mathrm{~cm} \approx 9 \mathrm{~cm}$
3) The surface area of a cylindrical vessel is $2201 \mathrm{~cm}^{2}$ and its height is 19.7 cm . What is the radius of the cylindrical vessel?
$11.3 \mathrm{~cm} \approx 11 \mathrm{~cm}$
4) Sam brought the lollipops jar near the science museum, the jar look like the cylindrical shape and has a radius of 6.5 mm and height 17.2 mm . What is the surface area of a jar?
$967.92 \mathrm{~mm}^{2} \approx 968 \mathrm{~mm}^{2}$
5) Sarah loves roses. She has a cylindrical-shaped container with height 13.7 cm and diameter 18.4 cm , she plans to fill the container with soil to grow her won rose plants. Find the surface area of the cylinder?
$1323.74 \mathrm{~cm}^{2} \approx 1324 \mathrm{~cm}^{2}$
